skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ohn-Bar, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 20, 2026
  2. Free, publicly-accessible full text available October 20, 2026
  3. Free, publicly-accessible full text available June 20, 2026
  4. Free, publicly-accessible full text available December 20, 2025
  5. We introduce a novel vision-and-language navigation (VLN) task of learning to provide real-time guidance to a blind follower situated in complex dynamic navigation scenarios. Towards exploring real-time information needs and fundamental challenges in our novel modeling task, we first collect a multi-modal real-world benchmark with in-situ Orientation and Mobility (O&M) instructional guidance. Subsequently, we leverage the real-world study to inform the design of a larger-scale simulation benchmark, thus enabling comprehensive analysis of limitations in current VLN models. Motivated by how sighted O&M guides seamlessly and safely support the awareness of individuals with visual impairments when collaborating on navigation tasks, we present ASSISTER, an imitation-learned agent that can embody such effective guidance. The proposed assistive VLN agent is conditioned on navigational goals and commands for generating instructional sentences that are coherent with the surrounding visual scene, while also carefully accounting for the immediate assistive navigation task. Altogether, our introduced evaluation and training framework takes a step towards scalable development of the next generation of seamless, human-like assistive agents. 
    more » « less